COMMON FORM FOR EXTRAPOLATIONS OF STORM SEVERITY IN THE NORTH ATLANTIC ? Paul H. Taylor and Alex Thomas Department of Engineering Science University of Oxford (e-mail: paul.taylor@eng.ox.ac.uk) ERA 20-year wave hindcast from ECMWF 5 locations for analysis All deep water, exposed sites North-south traverse down eastern North Atlantic Data downloaded Significant wave height H_s and mean wave period T_m every 6 hours Faroes - complete 6-hourly H_s dataset How to characterise storm-based wave severity? - use Peaks Over Threshold (POT) technique - requires independent peaks : 1 number per storm - what is a storm ?estimation of severity ? - aim : robust estimate of 1 in 100-year extreme storm ## Definition of a storm and storm severity - 1. Identify storms in Hs record (<24hours long, Hs>0.8 Hs-max) - 2. Choose a single parameter to capture storm strength *and* duration Assume individual wave heights each hour are Rayleigh distributed - 3. H_{mp} most probable maximum wave height for each *storm* - first introduced by Tromans and Vanderschuren 1995, OTC7683 In the 11th workshop in Halifax (Taylor, Barker, Bishop and Eatock Taylor), we compared fits to Norwegian (Haltenbanken off Trondheim) and Pacific buoy data using Order statistics - $(N, N-th | largest | H_{mp})$ ## 2 fitting forms - both examples of 'thin exponential-type tails' in extreme value theory $$Log_{10} N = a + b H_{mp} + c H_{mp}^{2}$$ - quadratic scaling = A + B H_{mp}^C - simple power law Here we concentrate on the power law form - this is motivated by the form of the data Faroes data: Order statistics - $(N, N-th largest H_{mp})$ Taking Log N helps, but curve is slightly convex So 3 –parameter fit Log N = A + B $$H_{mp}^{C}$$ # Desirable features of extreme value predictions - 1. Independent of choice of threshold - 2. Universal form, no sign of upper limit, consistent with theory of extreme value statistics - 3. Unbiased and robust prediction | | Number of Storms | | |-----------|------------------------|------------------------| | Area | H _s min = 5 | H _s min = 4 | | Biscay | 487 | 1086 | | Faroe | 1043 | | | Ireland | 1723 | | | Portugal | 488 | 1252 | | Trondheim | 387 | 948 | Choose to fit up to 500 storms (~25 per year, 2 per week in winter for ERA data) Bootstrapped mean and 5-95% estimates of the constant C in Log N = A + B H_{mp}^{C} 4 out of 5 locations have C ~ 1.5, only Trondheim is significantly different with C ~ 2 100-year estimate vs. number of storms (Nstorm) in 20-year record Possible collapse of order statistics to single form? 5-95% bootstrap confidence bands for each are 2x as wide as differences between individual distributions Scaling – effect of changing return period – universal? With Log N = A + B H_{mp}^{C} It becomes possible to use <u>recurrence relations</u> to extrapolate to long return periods So with estimates for the 1-year H_{mp-1} and the 10-year H_{mp-10} $$(H_{mp-100})^{C} = 2 (H_{mp-10})^{C} - (H_{mp-1})^{C}$$ etc. Apparently robust approach to estimating long return period storm severity based on several decades of wave data Wave climate VARIATION over 20-year hindcast 100-year storm severity $H_{\rm mp}$ -100 estimated using 5-year sliding window Recall that based on whole dataset we have $\frac{H_{mp100}}{H_{mp5}} = 1.2332$ Retain C=1.5, making sliding window and whole dataset fits consistent Trondheim: total variation ~ 4m (16%) 2 x width of bootstrap 5-95% bands Faroes : total variation \sim 7m (30%) >2 x width of bootstrap 5-95% bands Ireland: total variation ~ 5m (16%) 1.5 x width of bootstrap 5-95% bands Biscay : total variation \sim 4m (17%) 1.5 x width of bootstrap 5-95% bands Portugal: total variation ~ 2m (9%) width of bootstrap 5-95% bands ## Time → Same vertical scales for H_{mp-100} Variation of 100-year H_{mp} predictions based on 5-year sliding windows Some gross similarities in time Trondheim / Faroes / Ireland Biscay / Portugal Largest variation for Faroes, smallest variation for Portugal ### NORTH ATLANTIC OSCILLATION +ve phase N. European winter: mild + stormy + northerly storm tracks -ve phase : cold and dry + tracks more southerly NAO defined as average pressure difference Gibraltar-Iceland in winter NAO defined as average pressure difference Iceland-Gibraltar Is this teleconnection correlated with variation in North Atlantic storm severity? Trondheim 100-year storm correlated against winter NAO value over 20 years - maybe explains 50% of variability Fit to 5-year sliding window 100-year prediction $H_{mp-100} = 3.33 * NAO + 23.8$ - but not really large enough NAO variation #### **Conclusions** Robust method for estimating long return period storm severity for deep water, exposed sites in eastern North Atlantic Common exponential-type distribution in (wave height)^{1.5} - except for Trondheim — too far north, towards edge of storm tracks? For northern points, more 5-year variability Most severe location : west of Ireland, most variable : Faroes Least severe and least variable: Portugal Some correlation with NAO in the north, but 20 years data not long enough for firm conclusions on variability of wave climate